Ray Cluster Configuration ========================= To create Ray Clusters using the CodeFlare SDK a cluster configuration needs to be created first. This is what a typical cluster configuration would look like; Note: The values for CPU and Memory are at the minimum requirements for creating the Ray Cluster. .. code:: python from codeflare_sdk import Cluster, ClusterConfiguration cluster = Cluster(ClusterConfiguration( name='ray-example', # Mandatory Field namespace='default', # Default None head_cpu_requests=1, # Default 2 head_cpu_limits=1, # Default 2 head_memory_requests=1, # Default 8 head_memory_limits=1, # Default 8 head_extended_resource_requests={'nvidia.com/gpu':0}, # Default 0 worker_extended_resource_requests={'nvidia.com/gpu':0}, # Default 0 num_workers=1, # Default 1 worker_cpu_requests=1, # Default 1 worker_cpu_limits=1, # Default 1 worker_memory_requests=2, # Default 2 worker_memory_limits=2, # Default 2 # image="", # Optional Field labels={"exampleLabel": "example", "secondLabel": "example"}, annotations={"key1":"value1", "key2":"value2"}, volumes=[], # See Custom Volumes/Volume Mounts volume_mounts=[], # See Custom Volumes/Volume Mounts )) .. note:: The default images used by the CodeFlare SDK for creating a RayCluster resource depend on the installed Python version: - For Python 3.9: `quay.io/modh/ray:2.35.0-py39-cu121` - For Python 3.11: `quay.io/modh/ray:2.35.0-py311-cu121` If you prefer to use a custom Ray image that better suits your needs, you can specify it in the image field to override the default. If you are using ROCm compatible GPUs you can use `quay.io/modh/ray:2.35.0-py39-rocm61`. You can also find documentation on building a custom image `here `__. The ``labels={"exampleLabel": "example"}`` parameter can be used to apply additional labels to the RayCluster resource. After creating their ``cluster``, a user can call ``cluster.up()`` and ``cluster.down()`` to respectively create or remove the Ray Cluster. Custom Volumes/Volume Mounts ---------------------------- | To add custom Volumes and Volume Mounts to your Ray Cluster you need to create two lists ``volumes`` and ``volume_mounts``. The lists consist of ``V1Volume`` and ``V1VolumeMount`` objects respectively. | Populating these parameters will create Volumes and Volume Mounts for the head and each worker pod. .. code:: python from kubernetes.client import V1Volume, V1VolumeMount, V1EmptyDirVolumeSource, V1ConfigMapVolumeSource, V1KeyToPath, V1SecretVolumeSource # In this example we are using the Config Map, EmptyDir and Secret Volume types volume_mounts_list = [ V1VolumeMount( mount_path="/home/ray/test1", name = "test" ), V1VolumeMount( mount_path = "/home/ray/test2", name = "test2", ), V1VolumeMount( mount_path = "/home/ray/test3", name = "test3", ) ] volumes_list = [ V1Volume( name="test", empty_dir=V1EmptyDirVolumeSource(size_limit="2Gi"), ), V1Volume( name="test2", config_map=V1ConfigMapVolumeSource( name="test-config-map", items=[V1KeyToPath(key="test", path="data.txt")] ) ), V1Volume( name="test3", secret=V1SecretVolumeSource( secret_name="test-secret" ) ) ] | For more information on creating Volumes and Volume Mounts with Python check out the Python Kubernetes docs (`Volumes `__, `Volume Mounts `__). | You can also find further information on Volumes and Volume Mounts by visiting the Kubernetes `documentation `__. Deprecating Parameters ---------------------- The following parameters of the ``ClusterConfiguration`` are being deprecated. .. list-table:: :header-rows: 1 :widths: auto * - Deprecated Parameter - Replaced By * - ``head_cpus`` - ``head_cpu_requests``, ``head_cpu_limits`` * - ``head_memory`` - ``head_memory_requests``, ``head_memory_limits`` * - ``min_cpus`` - ``worker_cpu_requests`` * - ``max_cpus`` - ``worker_cpu_limits`` * - ``min_memory`` - ``worker_memory_requests`` * - ``max_memory`` - ``worker_memory_limits`` * - ``head_gpus`` - ``head_extended_resource_requests`` * - ``num_gpus`` - ``worker_extended_resource_requests``