S3 compatible storage with Ray Train examples ============================================= Some of our distributed training examples require an external storage solution so that all nodes can access the same data. The following are examples for configuring S3 or Minio storage for your Ray Train script or interactive session. S3 Bucket --------- In your Python Script add the following environment variables: .. code:: python os.environ["AWS_ACCESS_KEY_ID"] = "XXXXXXXX" os.environ["AWS_SECRET_ACCESS_KEY"] = "XXXXXXXX" os.environ["AWS_DEFAULT_REGION"] = "XXXXXXXX" Alternatively you can specify these variables in your runtime environment on Job Submission. .. code:: python submission_id = client.submit_job( entrypoint=..., runtime_env={ "env_vars": { "AWS_ACCESS_KEY_ID": os.environ.get('AWS_ACCESS_KEY_ID'), "AWS_SECRET_ACCESS_KEY": os.environ.get('AWS_SECRET_ACCESS_KEY'), "AWS_DEFAULT_REGION": os.environ.get('AWS_DEFAULT_REGION') }, } ) In your Trainer configuration you can specify a ``run_config`` which will utilise your external storage. .. code:: python trainer = TorchTrainer( train_func_distributed, scaling_config=scaling_config, run_config = ray.train.RunConfig(storage_path="s3://BUCKET_NAME/SUB_PATH/", name="unique_run_name") ) To learn more about Amazon S3 Storage you can find information `here `__. Minio Bucket ------------ In your Python Script add the following function for configuring your run_config: .. code:: python import s3fs import pyarrow def get_minio_run_config(): s3_fs = s3fs.S3FileSystem( key = os.getenv('MINIO_ACCESS_KEY', "XXXXX"), secret = os.getenv('MINIO_SECRET_ACCESS_KEY', "XXXXX"), endpoint_url = os.getenv('MINIO_URL', "XXXXX") ) custom_fs = pyarrow.fs.PyFileSystem(pyarrow.fs.FSSpecHandler(s3_fs)) run_config = ray.train.RunConfig(storage_path='training', storage_filesystem=custom_fs) return run_config You can update the ``run_config`` to further suit your needs above. Lastly the new ``run_config`` must be added to the Trainer: .. code:: python trainer = TorchTrainer( train_func_distributed, scaling_config=scaling_config, run_config = get_minio_run_config() ) To find more information on creating a Minio Bucket compatible with RHOAI you can refer to this `documentation `__. Note: You must have ``s3fs`` and ``pyarrow`` installed in your environment for this method.